H(t)=-4.9t^2+30(5)+400

Simple and best practice solution for H(t)=-4.9t^2+30(5)+400 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-4.9t^2+30(5)+400 equation:



(H)=-4.9H^2+30(5)+400
We move all terms to the left:
(H)-(-4.9H^2+30(5)+400)=0
We get rid of parentheses
4.9H^2+H-305-400=0
We add all the numbers together, and all the variables
4.9H^2+H-705=0
a = 4.9; b = 1; c = -705;
Δ = b2-4ac
Δ = 12-4·4.9·(-705)
Δ = 13819
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13819}=\sqrt{1*13819}=\sqrt{1}*\sqrt{13819}=1\sqrt{13819}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1\sqrt{13819}}{2*4.9}=\frac{-1-1\sqrt{13819}}{9.8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1\sqrt{13819}}{2*4.9}=\frac{-1+1\sqrt{13819}}{9.8} $

See similar equations:

| 9d=153 | | 32-5x=-32-10x | | 0.40x+0.20(100-x)=31 | | 4x^2-x-95=0 | | 9n=225 | | z+36=4 | | 3n^2+5n-418=0 | | e+8=47 | | p-44=-25 | | -10=4-7(x)/4 | | 2x(x+3)=×-4 | | 5x7=3x+13 | | (x-2)/5+8=1 | | 9x+3-10=(3x+) | | 3-10=4-7(x)/4 | | (2x+4)+3x=44 | | 6y+11=25 | | 0.40x+0.15(100-x)=33 | | (70+x)/2=61 | | F(x)=7-12x | | 127=3(1+5x)+4 | | (70-x)/2=61 | | 3(3x-4)-5=7x+20 | | 0.5+(3+x)=6.5 | | 23+p=33 | | m+61=28 | | -0.5+(-3+x)=6.5 | | t–1-5=3-10 | | 6m-58=7-(7-6m) | | 3+11x=-87+x | | 96=2k | | -3(-7b-2=-99 |

Equations solver categories